Quick Start¶
Get up and running with MarineGym in minutes. This guide covers the minimal setup for launching training runs, benchmarking large batches, and validating results.
Prerequisites¶
Follow the Source Setup or Docker Setup guide to provision Isaac Sim, IsaacLab, and MarineGym.
Activate the
simConda environment (or the equivalent environment used during installation).Change into the repository root so relative paths resolve correctly:
conda activate sim cd ~/MarineGym
Warm-Up Training Runs¶
Each script below lives in scripts/. Start with a small number of environments to validate your install before scaling up.
python train.py task=Hover algo=ppo headless=false enable_livestream=false
python train.py task=Track algo=ppo headless=false enable_livestream=false
python train.py task=Landing algo=ppo headless=false enable_livestream=false
Tips:
Set
headless=truewhen running on a remote machine without display access.Append
seed=<value>for reproducible experiments.
Evaluation and Resume¶
Switch to evaluation mode or resume interrupted runs by toggling the command-line options:
# Evaluate an existing checkpoint
python train.py task=Hover algo=ppo mode=evaluate headless=true
# Resume from a specific checkpoint directory
python train.py task=Hover algo=ppo resume_path=./checkpoints/hover_latest.pt
Weights & Biases logging is enabled by default. To operate offline:
export WANDB_MODE=offline
High-Throughput Benchmark¶
For the headline benchmark configuration (4096 parallel environments with the iAUV model):
python train.py task=HoverRand algo=ppo headless=true enable_livestream=false \
mode=train task.drone_model.name=iAUV task.env.num_envs=4096 total_frames=50000000
Monitor GPU utilisation with nvidia-smi and adjust task.env.num_envs or rendering resolution if memory pressure becomes critical.
Logging and Outputs¶
Checkpoints:
outputs/<experiment>/checkpoints/Episode statistics (JSON/CSV):
outputs/<experiment>/logs/Visualisations (if
enable_livestreamis true):outputs/<experiment>/media/
Use python analyze.py --run <experiment> (if provided) or open the Weights & Biases dashboard to explore learning curves.
Next Steps¶
Automate large sweeps with the scripts in Demos.
Explore environment configuration files under
cfg/to fine-tune actuators, sensors, and disturbance settings.Share reproducible runs by exporting the command history:
python scripts/train.py --dry-run > command.txt.